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Abstract In multi-agent navigation, agents need to

move towards their goal locations while avoiding col-

lisions with other agents and obstacles, often without

communication. Existing methods compute motions that

are locally optimal but do not account for the aggre-

gated motions of all agents, producing inefficient global

behavior especially when agents move in a crowded

space. In this work, we develop a method that allows

agents to dynamically adapt their behavior to their lo-

cal conditions. We formulate the multi-agent naviga-

tion problem as an action-selection problem and pro-

pose an approach, ALAN, that allows agents to com-

pute time-efficient and collision-free motions. ALAN is

highly scalable because each agent makes its own de-

cisions on how to move, using a set of velocities opti-

mized for a variety of navigation tasks. Experimental
results show that agents using ALAN, in general, reach
their destinations faster than using ORCA, a state-of-
the-art collision avoidance framework, and two other

navigation models.
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1 Introduction

Real-time goal-directed navigation of multiple agents

is required in many domains, such as swarm robotics,

pedestrian navigation, planning for evacuation, and traf-

fic engineering. Conflicting constraints and the need to
operate in real time make this problem challenging.
Agents need to move towards their goals in a timely

manner, but also need to avoid collisions with each

other and the environment. In addition, agents often

need to compute their own motion without any com-

munication with other agents.

While decentralization is essential for scalability and
robustness, achieving globally efficient motions is crit-

ical, especially in applications such as search and res-

cue, aerial surveillance, and evacuation planning, where

time is critical. Over the past twenty years, many decen-

tralized techniques for real-time multi-agent navigation

have been proposed, with approaches such as Optimal

Reciprocal Collision Avoidance (ORCA) [5] being able

to provide guarantees about collision-free motion for

the agents. Although such techniques generate locally
efficient motions for each agent, the overall flow and
global behavior of the agents can be far from efficient;
agents plan only for themselves and do not consider how

their motions affect the other agents. This can lead to
inefficient motions, congestion, and even deadlocks.

In this paper, we are interested in situations where

agents have to minimize their overall travel time. We
assume each agent has a preferred velocity indicating its
desired direction of motion (typically oriented towards

its goal) and speed. An agent runs a continuous cycle

of sensing and acting. In each cycle, it has to choose

a new velocity that avoids obstacles but is as close as

possible to its preferred velocity. We show that by in-

telligently selecting preferred velocities that account for
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the global state of the multi-agent system, the time effi-

ciency of the entire crowd can be significantly improved

compared to state of the art algorithms.

In our setting, agents learn how to select their veloc-

ities in an online fashion without communicating with

each other. To do so, we adapt a multi-armed bandit

formulation to the preferred velocity selection problem

and present ALAN (Adaptive Learning Approach for

Multi-Agent Navigation). With ALAN, agents choose

from a set of actions, one at each time step, based on a

combination of their goals and how their motions will

affect other agents. We show how critical the set of

available actions is to performance, and we present a

Markov Chain Monte Carlo learning method to learn

an optimized action space for navigation in a variety

of environments. Together with a scheme that guaran-

tees collision-free motions, these features allow ALAN

agents to minimize their overall travel time. 1

Main Results. This paper presents four main con-

tributions. First, we formulate the multi-agent naviga-

tion problem in a multi-armed bandit setting. This en-

ables each agent to decide its motions independently
of the other agents. The other agents influence indi-
rectly how an agent moves, because they affect the
reward the agent receives. The independence of the

choices made by each agent makes the approach highly

scalable. Second, we propose an online action selec-

tion method inspired by the Softmax action selection

technique [48], which achieves the exploration exploita-
tion tradeoff. Third, we propose a Markov Chain Monte
Carlo method to learn offline an optimized action set

for specific navigation environments, as well as an ac-

tion set optimized for multiple navigation scenarios.

Last, we show experimentally that our approach leads

to more time efficient motions in a variety of scenarios,

reducing the travel time of all agents as compared to

ORCA, the Social Forces model for simulating pedes-

trian dynamics [19], and the pedestrian model for col-

lision avoidance proposed in [27].

This work is an extended version of [12], which in-

troduced a multi-armed bandit formulation for multi-
agent navigation problems. Compared to [12], here we
reduce ALAN’s dependency on parameters, present an
offline approach to learn an optimized action set, and

include an extended experimental analysis of ALAN.

The rest of the paper is organized as follows. In Sec-

tion 2, we review relevant related work. In Section 3,
we provide background on collision avoidance methods,
especially on ORCA which is used in ALAN. In Sec-

tion 4, we present our problem formulation for multi-

agent navigation. ALAN and its components are de-

1 Videos highlighting our work can be found in
http://motion.cs.umn.edu/r/ActionSelection

scribed in Section 5, while our experimental setup and

performance metric are described in Section 6, where

we also present the scenarios we use to evaluate our

approach, and experimental results. Section 7 presents

our Markov Chain Monte Carlo method for learning

action spaces for different navigation environments. A

thorough experimental analysis of the performance of

ALAN is in Section 8, where we also discuss its applica-
bility in multi-robot systems. Finally, we conclude and
present future research plans in Section 9.

2 Related Work

Extensive research in the areas of multi-agent navi-

gation and learning has been conducted over the last

decade. In this section, we present an overview of prior

work most closely related to our approach. For a more

comprehensive discussion on multi-agent navigation and

learning we refer the reader to the surveys of Pelechano

et al. [38] and Buşoniu et al. [7], respectively.

2.1 Multi-Agent Navigation

Numerous models have been proposed to simulate indi-

viduals and groups of interacting agents. The seminal

work of Reynolds on boids has been influential on this

field [43]. Reynolds used simple local rules to create vi-

sually compelling flocks of birds and schools of fishes.

Later he extended his model to include autonomous

agent behaviors [42]. Since Reynolds’s original work,

many crowd simulation models have been introduced
that account for groups [4], cognitive and behavioral
rules [10,44], biomechanical principles [15] and socio-

logical or psychological factors [37,14,40]. Recent work

models the contagion of psychological states in a crowd

of agents, for example, in evacuation simulations [50].

Our approach, in contrast, does not make assumptions

about the psychological states of the agents, therefore
it is more generally applicable.

An extensive literature also exists on modeling the

local dynamics of the agents and computing collision-
free motions. Methods that have been proposed to pre-
vent collisions during navigation can be classified as

reactive and anticipatory.

In reactive collision avoidance, agents adapt their

motion to other agents and obstacles along their paths.

Many reactive methods [43,42,18,29,41] use artificial

repulsive forces to avoid collisions. However, these tech-

niques do not anticipate collisions. Only when agents

are sufficiently close, they react to avoid collisions. This

can lead to oscillations and local minima. Another limi-
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tation of these methods is that the forces must be tuned

separately for each scenario, limiting their robustness.
In anticipatory collision avoidance, agents predict

and avoid potential upcoming collisions by linearly ex-

trapolating their current velocities. In this line, geo-

metrically based algorithms compute collision-free ve-
locities for the agents using either sampling [52,39,28,

36] or optimization techniques [5,13].
We focus on minimizing the travel time of the agents,

but other metrics have been studied. For example, the

work in [46,54,26] minimizes the total length of the

path of the agents by formulating the path planning

problem as a mixed integer linear program. Coordinat-

ing the motion of a set of pebbles in a graph to minimize

the number of moves was studied in [32].

2.2 Reinforcement Learning

Many learning approaches used for robots and agents

derive from the reinforcement learning literature [7].

Reinforcement Learning (RL) addresses how autonomous

agents can learn by interacting with the environment to

achieve their desired goal [47]. An RL agent performs
actions that affect its state and environment, and re-
ceives a reward value which indicates the quality of the
performed action. This reward is used as feedback for

the agent to improve its future decisions. Different ap-

proaches have been proposed to incorporate RL when

multiple agents share the environment (see [7,31,51] for

extensive overviews).
In multi-agent RL algorithms, agents typically need

to collect information on how other agents behave and

find a policy that maximizes their reward. This is ex-

pensive when the state space is large and requires a

significant degree of exploration to create an accurate

model for each agent. Hence, approaches that model the

entire environment focus on small problems and/or a

small number of agents. To reduce complexity, some ap-

proaches focus on the local neighborhood of each agent

[55,56]. By considering a local neighborhood, the state

space of each agent is reduced. To completely avoid the

state space complexity, the learning problem can be for-

mulated as a multi-armed bandit problem [47], where

the agents use the reward of each action to make future

decisions. In multi-armed bandit problems, it is criti-

cal to balance exploiting the current best action and

exploring potentially better actions [2,33].

2.2.1 Action Selection Techniques

A variety of approaches aim at balancing exploration

and exploitation, which is critical for online learning

problems such as ours.

A simple approach is ǫ-greedy, which selects the

highest valued action with probability 1-ǫ, and a ran-
dom action with probability ǫ, for 0 ≤ ǫ ≤ 1. The value

of ǫ indicates the degree of exploration that the agent

performs [48]. Because of its probabilistic nature, ǫ-

greedy can find the optimal action, without taking into

account the difference between the values of the actions.

This means that ǫ-greedy does the same amount of ex-

ploration regardless of how much better the best known

action is, compared to the other actions.

Another widely used action-selection technique is

the upper confidence bounds (UCB) algorithm [3]. UCB

is a deterministic method that samples the actions pro-

portionally to the upper-bound of the estimated value

of their rewards (based on their current average reward)
and their confidence interval (computed using a rela-
tion between the number of times each action was se-
lected and the total number of action taken so far by

the agent). Unlike ǫ-greedy, UCB considers the value of

all actions when deciding which one to choose. However,
it does unnecessary exploration when the reward distri-

bution is static (i.e., the best action does not change).

A method that combines the probabilistic nature

of ǫ-greedy and that accounts for the changing reward
structure is the Softmax action selection strategy. Soft-

max biases the action choice depending on the relative
reward value, which means that it increases exploration
when all actions have similar value, and it reduces it

when some (or one) action is significantly better than

the rest. The action selection method we use is based

on the Softmax strategy, due to these properties.

2.3 Learning in Multi-Agent Navigation

Extensive work has also been done on learning and

adapting motion behavior of agents in crowded environ-

ments. Depending on the nature of the learning process,

the work can be classified in two main categories: offline

and online learning. In offline learning, agents repeat-

edly explore the environment and try to learn the op-

timal policy given an objective function. Examples of

desired learned behaviors include collision avoidance,

shortest path to destination, and specific group for-

mations. As an example, the work in [22] uses inverse

reinforcement learning for agents to learn paths from

recorded training data. Similarly, the approach in [49]
applies Q-learning to plan paths for agents in crowds.
In this approach, agents learn in a series of episodes
the best path to their destination. A SARSA-based [48]

learning algorithm has also been used in [34] for of-

fline learning of behaviors in crowd simulations. The

approach in [8] analyzes different strategies for shar-

ing policies between agents to speed up the learning
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Fig. 1: (a) Two agents, Ai and Aj , moving towards a potential collision. (b) The set of allowed velocities for agent

i induced by agent j is indicated by the half-plane delimited by the line perpendicular to û through the point

vi +
1
2
u, where u is the vector from vi − vj to the closest point on the boundary of V Oi|j

process in crowd simulations. In the area of swarm in-
telligence, the work in [23] uses evolutionary algorithms
for robotics, learning offline the parameters of the fit-

ness function and sharing the learned rules in unknown

environments.

Offline learning has significant limitations, which

arise from the need to train the agents before the en-

vironment is known. In contrast, the main part of our

work is an online learning approach. In online approaches,

agents are given only partial knowledge of the environ-

ment, and are expected to adapt their strategies as they

discover more of the environment. Our approach allows

agents to adapt online to unknown environments, with-

out needing explicit communication between the agents.

3 Background

In this section, we provide background information on

the method that agents employ to avoid collisions.

3.1 ORCA

The Optimal Reciprocal Collision Avoidance framework

(ORCA) is an anticipatory collision avoidance that builds

on the concept of Velocity Obstacles [9], where agents

detect and avoid potential collisions by linearly extrap-

olating their current velocities. Given two agents, Ai

and Aj , the set of velocity obstacles V OAi|Aj
repre-

sents the set of all relative velocities between i and j

that will result in a collision at some future moment.

Using the VO formulation, we can guarantee collision

avoidance by choosing a relative velocity that lies out-

side the set V OAi|Aj
. Let u denote the minimum change

in the relative velocity of i and j needed to avoid the

collision. ORCA assumes that the two agents will share

the responsibility of avoiding it and requires each agent

to change its current velocity by at least 1
2
u. Then, the

set of feasible velocities for i induced by j is the half-
plane of velocities given by:

ORCAAi|Aj
= {v |(v − (vi +

1

2
u)) · û},

where û is the normalized vector u (see Fig. 1). Similar

formulation can be derived for determining Ai’s per-

mitted velocities with respect to a static obstacle Ok.

We denote this set as ORCAAi|Ok
.

In a multi-agent setting, ORCA works as follows. At
each time step of the simulation, each agent Ai infers its

set of feasible velocities, FVAi
, from the intersection of

all permitted half-planes ORCAAi|Aj
and ORCAAi|Ok

induced by each neighboring agent j and obstacle Ok,

respectively. Having computed FVAi
, the agent selects

a new velocity vnew
i for itself that is closest to a given

preferred velocity v
pref
i and lies inside the region of fea-

sible velocities:

vnew
i = argmin

v∈FVAi

‖v − v
pref
i ‖. (1)

The optimization problem in (1) can be efficiently solved
using linear programming, since FVAi

is a convex region

bounded by linear constraints. Finally, agent i updates

its position based on the newly computed velocity. As

ORCA is a decentralized approach, each agent com-

putes its velocity independently.
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(a) Start positions (b) Goal positions (c) ORCA (d) ALAN

Fig. 2: Three agents cross paths. (a) Initial positions of the agents. (b) Goal positions of the agents. (c) When
navigating with ORCA, the agents run into and push each other resulting in inefficient paths. (d) When using

ALAN the agents select different preferred velocities which avoid local minima, resulting in more efficient paths.

In addition, each agent typically uses its goal-oriented

velocity v
goal
i as the preferred velocity given as input to

ORCA in (1). We refer the reader to [5] for more details.

3.2 Limitations of ORCA

Although ORCA guarantees collision-free motions and

provides a locally optimal behavior for each agent, the

lack of coordination between agents can lead to globally

inefficient motions. For an example, see Fig. 2. Here,

because the agents follow only their goal-oriented pre-

ferred velocity, they get stuck in a local minimum re-

sulting in the trajectories shown in Fig. 2(c). If instead

the agents behaved differently, for instance, by selecting

a different vpref for a short period of time, they might
find a larger region of feasible velocities. This might

indirectly help to alleviate the overall congestion, ben-

efiting all agents. Our proposed approach, ALAN, ad-

dresses this limitation, by allowing agents to adapt their

preferred velocity in an online manner, hence improving

their motion efficiency. An example of the trajectories
generated by our approach can be seen in Fig. 2(d).

4 Problem Formulation

In our problem setting, given an environment and a

set A of agents, each with a start and a goal position,
our goal is to enable the agents to reach their goals as

soon as possible and without collisions. We also require

that the agents move independently and without explic-

itly communicating with each other. For simplicity, we

model each agent as a disc which moves on a 2D plane

that may also contain a set of k static obstacles O (ap-

proximated by line segments in all our experiments).

Given n agents, let agent Ai have radius ri, goal po-

sition gi, and maximum speed υmax
i . Let also pt

i and vt
i

denote the agent’s position and velocity, respectively,

at time t. Furthermore, agent Ai has a preferred veloc-

ity v
pref
i at which it prefers to move. Let v

goal
i be the

preferred velocity directed towards the agent’s goal gi

with a magnitude equal to υmax
i . The main objective

of our work is to minimize the travel time of the set of

agents A to their goals, while guaranteeing collision-free
motions. To measure this global travel time, we could

consider the travel time of the last agent that reaches its

goal. However, this value does not provide any informa-

tion of the travel time of all the other agents. Instead,

we measure this travel time, TT ime(A), by accounting

for the average travel time of all the agents in A and
its spread. Formally:

TT ime(A) = µ (T imeToGoal(A))

+ 3 σ (T imeToGoal(A))
(2)

where T imeToGoal(A) is the set of travel times of all

agents in A from their start positions to their goals, and

µ(·) and σ(·) are the average and the standard devia-
tion (using the unbiased estimator) of T imeToGoal(A),

respectively. If the times to goals of the agents follow

a normal distribution, then TT ime(A) represents the

upper bound of the T imeToGoal(A) for approximately

99.7% of the agents. Even if the distribution is not nor-

mal, at least 89% of the times will fall within three

standard deviations (Chebyshev’s inequality). Our ob-

jective can be formalized as follows:

minimize TT ime(A)

s.t. ‖pt
i − pt

j‖ > ri + rj , ∀
i 6=j

i, j ∈ [1, n]

dist(pt
i, Oj) > ri, ∀i ∈ [1, n], j ∈ [1, k]

‖vt
i‖ ≤ υmax

i , ∀i ∈ [1, n]

(3)
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where dist(·) denotes the shortest distance between two

positions. To simplify the notation, in the rest of the
paper we omit the index of the specific agent being
referred, unless it is needed for clarity.

Minimizing Eq. 3 for a large number of agents using

a centralized planner with complete information is in-

tractable (PSPACE-hard [24]), given the combinatorial

nature of the optimization problem and the continu-

ous space of movement for the agents. Since we require

that the agents navigate independently and without ex-

plicit communication with each other, Eq. 3 has to be

minimized in a decentralized manner. As the agents do

not know in advance which trajectories are feasible, the

problem becomes for each agent to decide how to move

at each timestep, given its perception of the local envi-

ronment. This is the question addressed by our online

learning approach, ALAN, which is described next.

5 ALAN

ALAN is an action selection framework, which provides

a set of preferred velocities an agent can choose from,
and a reward function the agent uses to evaluate the ve-
locities and select the velocity to be used next. ALAN

keeps an updated reward value for each action using a

moving time window of the recently obtained rewards.

If information about the set of navigation environments

is available, ALAN can take advantage of an action

learning approach to compute, in an offline manner, an
action set that is optimized for one or a set of scenarios

(see Section 7).

In ALAN, each agent runs a continuous cycle of

sensing and action until it reaches its destination. To

guarantee real-time behavior, we impose a hard time

constraint of 50 ms per cycle. We assume that the radii,

positions and velocities of nearby agents and obstacles

can be obtained by sensing. At each cycle the agent
senses and computes its new collision-free velocity which
is used until the next cycle. The velocity has to respect
the agent’s geometric and kinematics constraints while

ensuring progress towards its goal.

To achieve this, ALAN follows a two-step process.

First, the agent selects a preferred velocity vpref (as
described later in Section 5.3). Next, this vpref is passed

to ORCA which produces a collision-free velocity vnew,

which is the velocity the agent will use during the next

timestep.

Algorithm 1 shows an overview of ALAN. This al-

gorithm is executed at every cycle. If an action is to

be selected in the current cycle (line 3, in average ev-

ery 0.2 s), the Softmax action selection method (pre-

sented in Section 5.3) returns a vpref (line 4), which is

passed to ORCA. After computing potential collisions,

ORCA returns a new collision-free velocity vnew (line
6), and the getAction method returns the action a that

corresponds to the vpref selected (line 7). This action

a is executed (line 8), which moves the agent with the

collision-free velocity vnew for the duration of the cycle,
before updating the agent’s position for the next sim-

ulation step (line 9). The agent determines the quality

of the action a (lines 10-12) by computing its reward

value (see Section 5.1). This value becomes available

to the action selection mechanism, which will select a

new vpref in the next cycle. This cycle repeats until the

agent reaches its goal.

Algorithm 1: The ALAN algorithm for an agent

1: initialize simulation
2: while not at the goal do
3: if UpdateAction(t) then

4: vpref
← Softmax(Act)

5: end if

6: vnew
← ORCA(vpref)

7: a← getAction(vpref)
8: Execute(a)
9: pt

← pt-1 + vnew
·∆t

10: R
goal
a ← GoalReward(at−1) (cf. Eq. 5)

11: R
polite
a ← PoliteReward(at−1) (cf. Eq. 6)

12: Ra ← (1− γ) · Rgoal
a + γ · R

polite
a

13: end while

GoalAgent
0

1

2
3

4

5

6
7

Fig. 3: Example set of actions with the corresponding

action ID. The eight actions correspond to moving at

1.5 m/s with different angles with respect to the goal:
0◦, 45◦, 90◦, 135◦, −45◦, −90◦, −135◦ and 180◦.

The main issue is how an agent should choose its
preferred velocity. Typically, an agent would prefer a ve-

locity that drives it closer to its goal, but different veloc-
ities may help the entire set of agents to reach their des-
tinations faster (consider, for example, an agent moving

backwards to alleviate congestion). Therefore, we allow

the agents to use different actions, which correspond

to different preferred velocities (throughout the rest of

this paper, we will use the terms preferred velocities
and actions interchangeably). In principle, finding the
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(a) (b)

(c)

(d)

Fig. 4: Two agents moving to their goals in opposite sides of the corridor. Different behaviors are produced by

optimizing different metrics. (b) When meeting in the middle of the corridor, agents cannot continue their goal

oriented motions without colliding. (c) Considering only goal progress when choosing actions results in one agent
slowly pushing the other out of the corridor. (d) Considering both goal progress and effect of action on other agents

results in one agent moving backwards to help the other move to its goal, reducing the travel time for both.

best motion would require each agent to make a choice

at every step in a continuous 2D space, the space of all

possible speeds and directions. This is not practical in

real-time domains. Instead, agents plan their motions

over a discretized set of a small number of preferred

velocities, the set Act. An example set of 8 actions uni-

formly distributed in the space of directions is shown

in Fig. 3. We call this set Sample set.

Different action sets affect the performance of the

agents. We analyze this in Section 7, where we present

an offline learning method to find an optimal set of

actions.

5.1 Reward Function

The quality of an agent’s selected vpref is evaluated

based on two criteria: how much it moves the agent to

its goal, and its effect on the motion of nearby agents.

The first criterion allows agents to reach their goals,

finding non-direct goal paths when facing congestion

or static obstacles. The second criterion encourages ac-
tions that do not slow down the motion of other agents.
To do this, agents take advantage of the reciprocity

assumption of ORCA: when a collision is predicted,

both potentially colliding agents will deviate to avoid

each other. Hence, if a collision-free vnew computed by
ORCA is different from the selected preferred velocity

vpref , it also indicates a deviation for another agent.
Therefore, to minimize the negative impact of its de-

cisions on the nearby agents, i.e., to be polite towards

them, each agent should choose actions whose vnew is

similar to the vpref that produced it. This duality of

goal oriented and “socially aware” behaviors, in hu-

mans, has been recently studied in [45]. Here, we show
that considering both criteria in the evaluation of each

action reduces the travel time of the agents overall. See

Fig. 4 for an example.

Specifically, we define the reward Ra for an agent

performing action a to be a convex combination of a

goal-oriented component and a politeness component:

Ra = (1− γ) · Rgoal
a + γ · Rpolite

a , (4)

where the parameter γ, called coordination factor, con-

trols the influence of each component in the total re-

ward (0 ≤ γ < 1).

The goal-oriented component Rgoal
a computes the

scalar product of the collision-free velocity vnew of the

agent with the normalized vector pointing from the po-

sition p of the agent to its goal g. This component pro-

motes preferred velocities that lead the agent as quickly

as possible to its goal. Formally:

Rgoal
a = vnew ·

g − p

‖g − p‖
(5)

The politeness component Rpolite
a compares the exe-

cuted preferred velocity with the resulting collision-free

velocity. These two velocities will be similar when the

preferred velocity does not conflict with other agents’

motions, and will be different when it leads to potential

collisions. Hence, the similarity between vnew and vpref

indicates how polite is the corresponding action, with

respect to the motion of the other agents. Polite actions

reduce the constraints on other agents’ motions, allow-

ing them to move and therefore advancing the global

simulation state. Formally:

Rpolite
a = vnew · vpref (6)

If an agent maximizes Rgoal
a , it would not consider

the effects of its actions on the other agents. On the
other hand, if the agent tries to maximize Rpolite

a , it
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has no incentive to move towards its goal, which means

it might never reach it. Therefore, an agent should aim

at maximizing a combination of both components. Dif-

ferent behaviors may be obtained with different values

of γ. In Section 6.7, we analyze how sensitive the per-

formance of ALAN is to different values of γ. Overall,
we found that γ = 0.4 provides an appropriate balance

between these two extremes.

Fig. 5 shows an example of conditions an agent may

encounter. Here, there is congestion on one side of the

agent, which results in low reward values for the left

angled motion. The other actions are not constrained,

and consequently their reward value is higher. In this

case, the agent will choose the straight goal-oriented

action, as it maximizes Ra.

(1, 1)

(0.2, 0.1)

(0.5, 1)

Goal(-1, 1)

Fig. 5: Example of reward values for different actions
under clear and congested local conditions. The reward
Ra of each action a is shown as a pair of goal-oriented

and a politeness components (Rgoal
a , Rpolite

a ).

5.2 Multi-armed Bandit Formulation

As the number of states is very large, we adapt a state-

less representation. Each agent can select one action at

a time, hence the question is which one should the agent

execute at a given time. In ALAN, agents learn the re-

ward value of each action through its execution, in an

online manner, and keep the recently obtained rewards

(using a moving time window of the rewards) to decide

how to act. We allow a chosen action to be executed for

a number of cycles, and perform an a-posteriori evalua-

tion to account for bad decisions. This way, the problem

of deciding how to move becomes a resource allocation

problem, where agents have a set of alternatives strate-

gies and have to learn their estimated value via sam-
pling, choosing one at each time in an online manner
until they reach their goals.

Online learning problems with a discrete set of ac-

tions and stateless representation can be well formu-
lated as multi-armed bandit problems. In a multi-armed

bandit problem, an agent makes sequential decisions on

a set of actions to maximize its expected reward. This
formulation is well-suited for stationary problems, as
existing algorithms guarantee a logarithmic bound on

the regret [3]. Although our problem is non-stationary

in a global sense, as the joint local conditions of the

agents are highly dynamic, individual agents can un-

dergo periods where the reward distribution changes

very slowly. We refer to Fig. 6 for an example of a navi-

gation task, where we can distinguish three periods with

different reward distributions.

Therefore, by learning the action that maximizes a

local reward function (Eq. 4) in each of these stationary

periods, agents can adapt to the local conditions.

5.3 Action Selection

We now describe how ALAN selects, at each action de-
cision step, one of the available actions based on their

computed reward values and a probabilistic action-selection
strategy, Softmax.

5.3.1 Softmax

Softmax is a general action selection method that bal-

ances exploration and exploitation in a probabilistic

manner [48,57,53]. This method biases the action selec-

tion towards actions that have higher value (or reward,

in our terminology), by making the probability of select-

ing an action dependent on its current estimated value.

The most popular Softmax method uses the Boltzmann

distribution to select among the actions. Assuming that

Ra is the reward value of action a, the probability of

choosing a is given by the following equation [48]:

Softmax(a) = exp

(

Ra

τ

)

/

|Act|
∑

a=1

exp

(

Ra

τ

)

(7)

The degree of exploration performed by a Boltzmann-
based Softmax method is controlled by the parameter
τ , also called the temperature. With values of τ close

to zero the highest-valued actions are more likely to be
chosen, while high values of τ make the probability of

choosing each action similar. We use a value of τ=0.2, as

we found that it shows enough differentiation between
different action values without being too greedy.

Another critical design issue of our action selection

method is the duration of the time window used. Keep-

ing old samples with low values might make a good

action look bad, but discarding them too quickly will

ignore the past. Because of this, we use a moving time

window of the most recently obtained rewards, and
compute the estimated value of each action based only
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(a) (b) (c) (d)

Fig. 6: Distinguishable periods of different reward distribution for the agent on the left. (a) The agent must reach

its goal on the other side of a group of agents moving in the opposite direction. The optimal action in each period
changes between (b) the goal oriented motion, (c) the sideways motion to avoid the incoming group, and (d) the

goal oriented motion again, once the agent has avoided the group.

on the rewards in that time window, using the last sam-
pled reward for each. If an action has not been sampled

recently, it is assumed to have a neutral (zero) value,

which represents the uncertainty of the agent with re-

spect to the real value of the action. Actions with a neu-

tral value have a low probability of being selected if the

currently chosen action has a “good” value (>0), and
have a high probability of being selected if the currently

chosen action has a “bad” value (<0). When making an
action decision, an agent retrieves the last sampled re-

ward value for each action in the time window, or zero

if the action has not been sampled recently. These val-

ues are then used by Softmax (Eq. 7) to determine the

probability of each action being chosen.

In Section 6.6 we analyze the effect of different sizes

of time window on the performance of ALAN.

5.3.2 Evolution of rewards during simulation

As agents move to their goals, their evaluation of the

available actions affects the probability of choosing each

action. Fig. 7 shows three simulation states of a navi-

gation task while Table 1 shows, for each action of the

black agent, the computed rewards and probability of

being chosen as the next action. The goal of this eval-

uation is to empirically show how the estimated value

of each action changes as the agent faces different con-

ditions, and how these estimates affect the probability

of the action being chosen.

In the Initial state (Fig. 7(a)), the black agent can

move unconstrained towards the goal, which is reflected

in the high reward and corresponding probability of the

goal oriented action (ID 0). In the Middle state (Fig.

7(b)), the black agent faces congestion that translates
into a low reward for the goal oriented action. Instead,
it determines that the action with the highest value is

moving left (ID 6), which also has the highest proba-

bility of being chosen. Finally, in the End state (Fig.

7(c)), the goal path of the black agent is free. Through

exploration, the black agent determines that the goal

oriented motion (ID 0) is again the one with the best

value, though with lower reward value than in the be-

ginning, as the wall prevents the agent from moving

at full speed. With a 56.7% probability, the agent se-

lects the goal oriented motion and eventually reaches

its goal. Note that the actions not sampled during the

time window used in this experiment (2s) are assigned

the neutral zero value.

6 Evaluation

We now present the experimental setup, performance

metrics, and scenarios used to compare the performance

of ALAN to other navigation approaches (Section 6.4).

We also evaluate the design choices of ALAN, specifi-

cally the action selection method (Section 6.5), the time

window length (Section 6.6), and the balance between
goal progress and politeness, controlled by the coordi-
nation factor γ (Section 6.7) in the reward function.

Additional results are presented later, after we extend
the action selection method to include learning the ac-
tion space.

6.1 Experimental Setup

We implemented ALAN in C++. Results were gathered
on an Intel Core i7 at 3.5 GHz. Each experimental result

is the average over 30 simulations. In all our runs, we

updated the positions of the agents every ∆t = 50ms

and set the maximum speed υmax of each agent to

1.5m/s and its radius to 0.5m. Agents could sense other
agents within a 15m radius, and obstacles within 1m.

To avoid synchronization artifacts, agents are given a
small random delay in how frequently they can update
their vpref (with new vpref decisions computed every

0.2 s on average). This delay also gives ORCA a few

timesteps to incorporate sudden velocity changes before
the actions are evaluated. Small random perturbations
were added to the preferred velocities of the agents to

prevent symmetry problems.
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Goal Goal Goal

(a) Initial (b) Middle (c) End

Fig. 7: Screen shots of three states of a navigation problem. (a) Initially, the black agent can move unconstrained
towards the goal. (b) During its interaction with other agents, the black agent moves sideways since this increases

its reward. (c) Finally, when its goal path is free, the black agent moves again towards the goal.

Simulation state
Action ID

0 1 2 3 4 5 6 7

Initial
reward 0.997 0 0 0.147 0 0.145 0 0
prob 94.1% 0.64% 0.64% 1.34% 0.64% 1.33% 0.64% 0.64%

Middle
reward -0.05 -0.42 -0.54 0 0.001 -0.192 0.456 0
prob 5.4% 0.83% 0.46% 7.1% 7.1% 2.7% 69.3% 7.1%

End
reward 0.63 0.47 0 0.48 0 0 0.177 0
prob 56.7% 25% 2.4% 3% 2.4% 2.4% 5.8% 2.4%

Table 1: Reward values and probability for each action to be chosen by the black agent using ALAN in the three

different states shown in Fig. 7. See Fig. 3 for the corresponding set of actions.

(c)

(f)

Goal

(a) (b)

(d)

(e)

(g)

(h)

Fig. 8: Simulated scenarios:(a) Congested, (b) Deadlock, (c) Incoming, (d) Blocks, (e) Bidirectional, (f)

Circle, (g) Intersection and (h) Crowd.

6.2 Performance Metric

To evaluate the performance of ALAN, we measure the

time that the agents take to reach their goals compared

to the upper bound of their theoretical minimum travel

time. We call this metric interaction overhead.

Definition: Interaction Overhead. The interaction over-

head is the difference between the travel time of the set

of agents, as measured by Eq. 2, and the upper bound

of their travel time if all the agents could follow their

shortest paths to their goals at maximum speed without

interacting with each other, i.e.:

Interaction Overhead = TT ime(A)−MinTTime(A)
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agents. Here the set of agents is made implicit, while

the action set is an explicit input to the simulation. We

evaluate an action set Act with the function F , whose

definition is equivalent to the definition of TT ime in

Eq. 2 but with action set as the explicit argument rather

than the set of agents. The simulation is repeated multi-

ple times and the average evaluation from all repeated

runs is used to evaluate the action set. Following the
simulated annealing scheme, the number of simulation
runs increases over iterations, as later local refinement

has less uncertainty.

Action Set Update. We use a common version

of MCMC, the Metropolis-Hasting Monte Carlo [16]
scheme to reject some of the attempted modifications

to efficiently explore better action sets. The probabil-
ity of keeping a change is related to how it changes the
evaluation F , which is the key to biasing towards ac-

tion sets with lower evaluation values. The probability
to accept a new action set Act′ over a previous action

set Act is

min

(

1, q(Act,Act′) exp
(F − F ′

T

)

)

, (9)

where F and F ′ are the evaluation with action set Act

and Act′ respectively, q(Act,Act′) is a factor account-

ing for the asymmetric likelihood of attempted transi-

tioning between Act and Act′, and T is a parameter
within the simulated-annealing scheme. The parameter

T decreases over iterations, making the probability of

accepting unfavorable changes decrease, which moves

the optimization from global exploration towards local

refinement.

After a predefined set of iterations of the MCMC

process, the action set Act with the lowest travel time
is returned. In our domain, agents have no previous

knowledge of the environment, which means that they

cannot determine which actions are available before-

hand. However, this MCMC approach allows us to do a

qualitative analysis of what behaviors are most effective

in each type of environment, as we will see next.

7.1 Optimized Action Sets

Below we discuss the optimized set of actions that MCMC
returned for each of the scenarios shown in Fig. 8, along
with a learned action set that would work well across
different scenarios, even ones not considered in the learn-

ing process.

7.1.1 Action Sets Optimized for Each Scenario

Fig. 13 and Fig. 14 show the set of actions computed by

MCMC for different scenarios. As a general observation,

the action sets learned for all these scenarios contain

at least one action that moves the agent, to some de-
gree, backwards from its goal. This backtracking helps
in reducing congestion, allowing agents to quickly move

to their goals. In the Congested, Deadlock, and

Crowd scenarios, our MCMC approach found that a
set of just three actions is enough to minimize the ar-

rival time of the agents, while only two actions are
needed for the Intersection. In contrast, the action

set found in the Blocks scenario is larger and highly

asymmetrical as compared to the previous cases. Most

actions in this scenario move the agents closer to their

goals, unlike the dominant backtracking motions of the

previous scenarios. Similar to the Blocks scenario, in

the Bidirectional scenario, a number of actions were
computed by MCMC that mostly bias the motion of

the agents to their right. This bias allows agents to cre-

ate lanes in each side of the corridor, increasing the

efficiency of their own motions and creating space for

agents coming in the opposite direction.

Fig. 15 shows the optimized set of actions for the

Incoming and Circle scenarios that are void of static

obstacles. A common pattern found by MCMC for these

environments is that the actions are heavily biased to-

wards one of the sides of the agents. This bias, along
with the absence of obstacles, allows agents to move
around other agents using the available space. In the
Circle scenario, for example, the optimized actions

allow a vortex-shaped pattern to emerge when agents
reach the center of the environment, which avoids con-
gestion and helps the agents reach their goals faster.

Note that, in both scenarios, the two sideways actions
are very similar to each other. This gives agents a more
fine grained control of their avoidance behavior, mini-

mizing the detour from their goal oriented motion.

7.1.2 Multi-scenario Optimized Action Set

To learn a multi-scenario action set, first we trained

MCMC on five scenarios, leaving out the Crowd, Bidi-

rectional, and Intersection scenarios as test ex-

amples. We chose to leave out these scenarios because

without being identical to other scenarios, they share

some features with the training set: they have obsta-

cles which constrain the motion of the agents, and also

require agents to interact with each other. Then, we

evaluated the resulting multi-scenario optimized action

set in the entire set of eight scenarios.

The learned multi-scenario optimized action set can

be seen in Fig. 16. We can observe two main features.

First, there is asymmetry in the actions, which is help-

ful in obstacle-free environments to implicitly coordi-

nate the motion of agents and avoid congestion. Sec-
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Performance degrades gracefully as the probability

of actions not being executed increases. Specifically, the
rate at which the interaction overhead values increase
depends on the frequency of change of the locally opti-

mal action. In the Incoming scenario, for example, the

locally optimal action for the single agent only changes
a couple of times (to avoid the group and to resume goal

oriented motion), hence the performance degradation is
not noticeable until the probability of actuator failure
is over 70%. On the other hand, in the Congested sce-

nario the performance degradation is visible at around
20% of probability of actuator failure. Overall, ALAN
still performs well under these conditions.

9 Conclusions and Future Work

In this paper, we addressed the problem of computing
time-efficient motions in multi-agent navigation tasks,

where there is no communication or prior coordination
between the agents. We proposed ALAN, an adaptive
learning approach for multi-agent navigation. We for-

mulated the multi-agent navigation problem as an ac-

tion selection problem in a multi-armed bandit setting,

and proposed an action selection algorithm to reduce

the travel time of the agents.

ALAN uses principles of the Softmax action selec-
tion strategy and a limited time window of rewards to

dynamically adapt the motion of the agents to their

local conditions. We also introduced an offline Markov

Chain Monte Carlo method that allows agents to learn

an optimized action space in each individual environ-

ment, and in a larger set of scenarios. This enables

agents to reach their goals faster than using a prede-

fined set of actions.

Experimental results in a variety of scenarios and

with different numbers of agents show that, in general,

agents using ALAN make more time-efficient motions

than using ORCA, the Social Forces model, and a pre-

dictive model for pedestrian navigation. ALAN’s low
computational complexity and completely distributed
nature make it an ideal choice for multi-robot systems

that have to operate in real-time, often with limited

processing resources.

There are many avenues for future research. We
plan to investigate the applicability of ALAN to hetero-

geneous environments, for example, by letting ALAN
agents learn the types of the other agents present in the
environment and their intended goals. This would allow

an agent to more accurately account for the behavior of

nearby agents during action selection. Finally, we would

also like to port our approach to real robots and test

it in real-world environments, such as for search and

rescue operations or evacuation planning.
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